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Abstract
An effective quantum number that determines with high accuracy the
level ordering in arbitrary centrally symmetric potentials for any space
dimensionality is introduced and calculated by means of certain universal
methods based on the known estimates for the total number of bound states in
the same potential for various dimensionalities. Our new approach reproduces
many known exact results. The effective number is used for constructing the
periodic system of the atomic electron shells.

PACS numbers: 03.65.−w, 03.65.Sq, 03.65.Ge, 02.30.Mv

1. Introduction

The lack of analytic solutions for the most centrally symmetric potentials calls for the
development of a method to approximate the spectra. Such a method is currently especially
useful since besides known problems in atomic physics, theoretical models of nuclei [1] or
quarkonium [2–4] there has recently arisen a number of new objects (metallic clusters [5, 6],
etc) for which some analogies of the periodic system of shells may be constructed [7–9]. They
may differ not only by the nature of the self-consistent field but also by their dimensionality
d. A lot of effort has been made to obtain rigorous results (see e.g. [2–4, 10–12]), but these
analogies only give some inequalities for special forms of potentials and only for d = 3.

A standard assumption is that the energy values depend on some linear combinations of
the radial nr and orbital l quantum numbers, i.e. E(nr, l) = E(αnr + βl). The Madelung–
Kletchkovsky rule predicts the appearance of new shells (nr , l) in the periodic system of the
elements with increasing nr + 2l [7–9]. E = E(3nr + l) is expected for the metallic clusters
[5, 6]; a similar quantum number for nuclei was proposed in [1] by using a certain classical
analogy.
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However, such a dependence of the exact spectra on some linear combinations is known
only for the Coulomb and oscillator potentials:

Vc(r) = −Z

r
, Ec(nr , l) = −Cc (ν + λ)−2 , (1)

Vosc(r) = br2, Eosc(nr , l) = Cosc (ν + λ/2) , (2)

ν = nr +
1

2
, λ(d) = l +

d − 2

2
. (3)

Two remarkable facts are known (at least for d = 3) for our reference potentials (1) and
(2) and only for them. First, the usual WKB condition

1

π

∫ √
2 (E − V (r)) − λ2

r2
dr = ν (4)

leads to the exact spectra (1) and (2). For d = 3, the term λ2/r2 is known as the centrifugal
potential with the Langer correction l(l + 1) → (l + 1/2)2 [13]. Second, for the oscillator, we
have

1

π

∫ √
2 (E − V (r)) − λ2

r2
dr = 1

π

∫ √
2 (E − V (r)) dr − λ

2
. (5)

In all cases, the integration limits are the corresponding turning points and we put m = h̄ = 1.
Combining (4) and (5), we obtain

1

π

∫ √
2 (E − V (r)) dr = ν +

λ

2
, (6)

so that on the right-hand side of (6) we see the same linear combination of ν and λ as in (2).
In the present paper we generalize (6) and get an effective quantum number

T (nr, l) ≡ ν + φλ =
(

nr +
1

2

)
+ φ

(
l +

d − 2

2

)
(7)

for any centrally symmetric potentials and any dimensionality of the problem by means of
some generalization and new universal variations of the methods used earlier [14–16] in order
to obtain T for d = 3. The coefficient φ is determined as a definite combination of the
functionals Nd [E;V ], which represent asymptotic estimates for the total number of bound
states in a given potential V (r) with energies not exceeding E [17].

This quantum number T (7) determines the order of the bound states: E(T ) > E(T ′) if
T > T ′. For our reference cases (1) and (2), T coincides with ν +λ and ν +λ/2 respectively. In
a general case, T very well describes the real situation, but it is formally not the exact quantum
number. Note that the principal quantum number n = nr + l + 1 determines the spectrum only
for the Coulomb potential and only if d = 3.

Hereafter, we present both our general method and several of its applications such as level
ordering, screened Coulomb potentials, atomic shells ordering, etc. The general logical basis
of our treatment is summarized in section 10.

2. The Schrödinger equation and its conformal transformation

We use the Schrödinger equation in the form (m = h̄ = 1)

�d	 + P 2	 =
(

∂2

∂r2
+

d − 1

r

∂

∂r

)
	 +

�d−1(�)	

r2
+ P 2	 = 0,

P 2 = 2 (E − V (r)) , (8)

2
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where �d−1(�) denotes the Laplace operator on the unit sphere Sd−1, E is the energy value
and V (r) is the potential. Equation (8) corresponds to the following metric:

ds2 = dr2 + r2d�2
d−1 (9)

with 0 � r < ∞ and �d−1 being coordinates on Sd−1.
In order to eliminate the first derivative in (8) and the singularity at r = 0, we represent

the Schrödinger equation in a conformal metric ds̃2 with a new variable ρ = ln r so that

ds2 = r2ds̃2 = e2ρ
(
dρ2 + d�2

d−1

)
.

With reference to [18], we obtain the following equation instead of (8):

d2

dρ2
+ �d−1(�) + K(d) + e2ρP 2 = 0, (10)

K(d) = −(d − 2)2/4,  = exp

(
d − 2

2
ρ

)
	, −∞ < ρ < ∞. (11)

We can prove (10) by a simple substitution of (11) into (8); for d = 3, this is the Langer
transformation introduced earlier as an ad hoc form.

Taking into account the eigenvalues [19]

�d−1(�)Y = −L2Y, L2 = l(l + d − 2), l = 0, 1, 2, . . . , (12)

and the term K(d) in (11), for  = ψ(ρ)Y (�) we obtain

ψ ′′ + Wψ − λ2ψ = 0, λ = l +
d − 2

2
, (13)

W(E, ρ) = r2P 2(r) = 2e2ρ (E − V (eρ)) . (14)

The usual condition 	(r = 0) < ∞ leads to ψ(ρ) → 0 if ρ → −∞. The exact spectra
of (8) and (10), (13) must be identical as 	 and  are only distinguished by a positive factor
e2ρ .

We have seen that the usual ‘automatic’ replacement l(l + 1) → λ2 actually means
that we work in a new special conformal curved space; its curvature is Ke−2ρ with K from
(11). Instead of the topology Rd = Sd−1 × (0,∞), we get Sd−1 × (−∞,∞) in the conformal
space. Coordinates (ρ,�) are similar to the Cartesian ones in the maximum possible measure:
ρ is a harmonic coordinate, a field of the parallel vectors exists and all sections ρ = const are
identical [20]. That is why the leading WKB approximation in the conformal space gives the
best possible result (while exact spectra must be identical in the two metrics ds2 and ds̃2).

Some refined calculations [19] show that the number of eigenstates for equation (12) is

D(l) = (l + d − 1)!

l!(d − 1)!
− (l + d − 3)!

(l − 2)!(d − 1)!

or after some arithmetic

D(l) = 2S(l)

(d − 2)!

(
l +

d − 2

2

)
, (15)

S(l) = (l + d − 3)(l + d − 4) . . . (l + 2)(l + 1).

S(l) contains (d − 3) factors, so that the two leading terms in l are

D(l) = 2ld−2

(d − 2)!
+ const · ld−3.

3
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Now let us express D(l) through λ (13). By multiplying the first and the last factors of S (15),
then multiplying the second and the last but one factors and so on, we obtain

S =
[
λ2 −

(
d

2
− 2

)2
] [

λ2 −
(

d

2
− 3

)2
]

. . .

where the last factor is (λ2 − 1/4) if d − 3 is even or simply λ if d − 3 is odd. In any case,
the leading terms are

D(λ) = D̃(λ) + const · λd−4, D̃(λ) = 2λd−2

(d − 2)!
. (16)

Thus, D(λ) has no term of order λd−3 unlike D(l). That is why λ is the most suitable variable
with the smallest distinction between D and the leading term D̃.

The WKB quantization condition for (13) is

I (E, λ) ≡ 1

π

∫ √
W(E, ρ) − λ2 dρ = nr +

1

2
≡ ν. (17)

We find (17) to be identical to (4) when we return to the previous variables r and P 2 (8).

3. Linear approximation of the WKB integral

As we have already seen, I (E, λ) is linear in λ for the oscillator and Coulomb potentials. In
the general case, we can write

N1(E) ≡ I (E, 0) = I (E, λ) + φλ + q(E, λ), (18)

where q denotes all nonlinear corrections. For the above cases (1) and (2), q ≡ 0 and
φ = 1, φ = 1/2 respectively. For determining φ, we use hereafter the known estimates Nd for
the total number of bound states in a d-dimensional problem with the energies not exceeding
E [17]; being expressed in our variables W,ρ, they are

Nd = B
(

3
2 , d−1

2

)
π(d − 2)!

Md(E), Md(E) =
∫

Wd/2(E, ρ) dρ, d � 2, (19)

where B(y, z) is the beta function. We will show how to obtain Nd (19) using (17) and (16).
At a fixed λ (5), equation (17) determines energies of the bound states. It is evident that the
maximum value of ν corresponds to the maximum energy so that I (E, λ) is equal to the total
number of bound states with a given λ and values of energies not exceeding E (similar to that
in WKB, we neglect the difference between nr and ν in this case too). Now we have to take
into account the degeneracy of states (16). Using the universal form of the first term D̃, we
multiply I (E, λ) (17) by D̃ and integrate with respect to λ over the domain 0 � λ � A:

A2(E) = max
ρ

W(E, ρ).

We suppose that W(E, ρ) has a sole maximum at any E. In intermediate calculations, we treat
λ as a continuous variable. Changing the order of integration, we obtain∫ A(E)

0
D̃(λ)I (E, λ) dλ = Nd(E) (20)

with Nd from (19). Thus, the leading term D̃ instead of D must be used in WKB methods.
Now we return to (18) and intend to choose the value of φ so that q(E, λ) averaged over

all bound states becomes zero. Multiplying both sides of (18) by D̃ and integrating with
respect to λ, we obtain

Nd

Ad
= 2N1

A(d − 1)!
− 2φ

d(d − 2)!
. (21)

4
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As Nd is proportional to Ad , the value of φ does not depend on A. It is also invariant under
the transformation r → ar , i.e. ρ → ρ + ln a, a > 0. In order to simplify (21), we introduce
relative parameters χd comparing Nd for a given potential with N

(c)
d for the above reference

case: the Coulomb potential with the same value of A as in Nd . We have A2 = Z2/2|E| for
W (14) with V = −Z exp (−ρ). Calculating Nd (19), we get at any Z and E < 0

χd = Nd

N
(c)
d

= d!Nd

2Ad
, d � 2, χ1 = N1

A
. (22)

Substituting (22) into (21) and using (19), we finally obtain

φ = χ1 +
χ1 − χd

d − 1
, χd = Md

Admd

, md = B (d/2, 1/2) . (23)

In the general case, we have φ = φ(d,E). For our reference cases (1) and (2), φ = χd = const
does not depend on d or on E and coincides with φ = 1, 1/2. Thus, we have obtained the
desired effective quantum number T (7) with φ of (23). All the parameters χd , φ are some
functionals of a given potential, such as φ = φ[V ], etc, as well as some functions of E and d.

The quantization condition (17) with respect to (18) and (21) takes the following form:

A(E)χ1(E) = 1

π

∫ √
2 (E − V (r)) dr = T (nr, l;φ(E)). (24)

The functions χd(E) may be treated as a special nonlinear transform of a given potential
V (r). This transformation is the most adequate one for our method. Note that φ and χd are
invariant under the transformation W → BW with B > 0.

In what follows, we will treat (23) as the basic form for φ. Nevertheless, it is useful to
find another approximation for φ and to compare them in order to evaluate their accuracy.
Suppose that we construct a multiplicative expression for φ:

φm(E, d) = CNα
d N

β

1

using only integral estimates Nd and excluding the above parameter A. Since Nd ∝ Ad , we

must put αd + β = 0. Substituting χd instead of Nd , we get φm = C ′
(
χ1χ

−1/d

d

)β

. Requiring

that φm = χd = φ for our reference cases, we finally have

φm(E, d) =
(

χd
1

χd

) 1
d−1

. (25)

The same value of φm was obtained earlier using a duality between certain pairs of power-law
potentials [15]. As we will see, χd is a smooth monotonic function of d for all interesting
model potentials. We introduce a convenient auxiliary function fd :

χd = χ∞ exp(fd); (26)

then the ratio of φm to φ is

R = φm

φ
= 1 +

d

2(d − 1)2
(f1 − fd)

2 + O(f 3). (27)

Numerical calculations show that R is very close to 1, so that R − 1 < 0.01 and in most cases
< 0.002 in a wide interval of E for a wide set of potentials studied and for all d (see table 1).
This proximity of two values of φ calculated by quite different methods confirms the objective
character of φ and of the effective quantum number T itself. We shall return to this proximity
in section 7.

Note that we may treat d in Md, χd and so on as a continuous variable in intermediate
calculations.

5
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Table 1. Values of χd and φ for several potentials: (41a)–(41d) and (28), as well as φm(3) (25).

V (r) χ∞ χ3 χ2 χ1 = φ(∞) φ(3) φ(2) φm(3)

E = 0 (41a) 1.414 1.376 1.359 1.316 1.286 1.273 1.286
(41b) 2 2 2 2 2 2 2
(41c) 1.826 1.803 1.793 1.769 1.752 1.745 1.752
(41d) 1.89 1.87 1.84 1.78 1.74 1.72 1.75

E → −∞ (41a)–(41d) 1 1 1 1 1 1 1
μ = −1 1 1 1 1 1 1 1
μ → 0 0.707 0.688 0.680 0.658 0.644 0.636 0.643

V = brμ μ = 1 0.577 0.568 0.563 0.551 0.543 0.539 0.544
μ = 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Any E μ = 3 0.447 0.457 0.461 0.469 0.475 0.477 0.476
μ → ∞ 0 0.212 0.250 0.318 0.371 0.386 0.390

4. Nonlinear transform χd for the power-law potentials

In this section, we will study power-law potentials

V (r) = brμ, bμ > 0 (28)

with −2 < μ < ∞. For them, the functions χd (22) and φ (23) are monotonic and do not
depend on E:

χd(μ) =
(

2 + μ

2

) 2+μ

2
d
μ 2d/2

μd/2+1

B(d/μ, d/2 + 1)

B(d/2, 1/2)
(μ > 0),

(29)

χd(μ) =
(

2

2 − |μ|
) 2−|μ|

2
d

|μ| 2d/2

|μ|d/2+1

B
(
d

2−|μ|
2|μ| , d

2 + 1
)

B(d/2, 1/2)
(−2 < μ < 0).

In the limiting case d → ∞, we obtain from (28) and (29), for all μ > −2,

χ∞ = 1√
μ + 2

. (30)

It is quite natural that expression (29) does not depend on d if μ = 2, μ = −1. Values of χd

and φ (23) are shown in table 1.
For the power-law potentials, the following expansion fd (26) with χ∞ (30) is valid:

fd =
∞∑

k=1

bk

dk
, χd = χ∞

(
1 +

b1

d
+ · · ·

)
(31)

b1(μ) = (μ + 4)2

12(μ + 2)
− 3

4
, b3(μ) = 1

360

(
7 +

8μ3

(μ + 2)2

)
, b2 = b4 ≡ 0. (32)

The values of both b1 and b3 are equal to zero for the oscillator and Coulomb potentials, and
are small in the vicinity of |b3| � |b1| and b1b3 < 0. Correspondingly, the ratio R (27) is very
close to 1. At any fixed d, the value of φ(d, μ) (23) with χd (29) decreases monotonically
with increasing μ.

All model potentials checked by us reveal similar simple asymptotical behavior. It seems
to be a typical peculiarity of any physically reasonable potential. That is why our method may
be universal enough (not including artificial counterexamples).

6
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5. The level ordering in accordance with T and exact results

Since the level ordering is a very important property of many-particle systems, many authors
have tried to obtain exact theorems for several special forms of potentials and for d = 3.
Our effective quantum number T (7) together with condition (24) immediately leads to the
universal behavior for all potentials V (r):

sgn
(
E(T ) − E(T ′)

) = sgn
(
T − T ′) , (33)

since the left-hand side of condition (24) is a monotonic function of E. In this section, we
show that our expressions (7) and (23) for T are exact enough to reproduce many known or
expected results.

It is interesting to compare expression (33) with known results. The first example connects
two differential operators (d = 3)

Y1[V ] = r
d2

dr2
(rV ) = r

dV

dr
(κ(r) + 1) ,

Y2[V ] = d

dr

(
1

r

dV

dr

)
= 1

r2

dV

dr
(κ(r) − 2) , (34)

κ(r) = 1 +
r
(
d2V/dr2

)
dV/dr

with two energy differences respectively:

D1 = E(nr + 1, l) − E(nr, l + 1),

D2 = E(nr, l) − E(nr − 1, l + 2). (35)

We have introduced an auxiliary function κ(r); for power-law potentials κ(r) ≡ μ.
The theorem proved in [10, 12] states in our notation that

sgnY1 = sgnD1, sgnY2 = sgnD2 (36)

if sgnYk = const for 0 < r < ∞. Suppose that our T method is exact. Then, since for
monotonic attractive potentials dV/dr > 0 in (34), using (33), we can write instead of (36)

sgnY1[V ] = sgn (κ(r) + 1) = sgn (T (nr + 1, l) − T (nr, l + 1)) ,

sgnY2[V ] = sgn (κ(r) − 2) = sgn (T (nr , l) − T (nr − 1, l + 2)) . (37)

For power-law potentials, we have φ = φ[μ] which does not depend on E and κ = μ.
Substituting T (7) into (37), we get two equations equivalent to (36):

sgn (μ + 1) = sgn(1 − φ), (38a)
sgn (μ − 2) = sgn(1 − 2φ). (38b)

Equality (38a) occurs for all potentials (28) since φ (23) with χd (29) is a monotonic function
of μ (see the examples in table 1): φ = 1/2 for κ = μ = 2 and φ = 1 for κ = μ = −1.

Another exact statement is as follows [4]: for power-law potentials (28) d2E(0, l)/dl2 > 0
if μ > 2. From our condition (24), we immediately obtain

E(nr, l) = CμT
2μ

μ+2 = Cμ (ν + φλ)
2μ

μ+2 , Cμ > 0, μ > 0,

sgn
∂2E

∂l2
= sgn(μ − 2),

so that the above-mentioned inequality is valid for our T.
We will also study a family of potentials for quarkonium systems [4] in section 9.

7
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6. Screened Coulomb potentials

In this section, we will study with the help of our new method another actual and interesting
class of centrally symmetric potentials:

V (r) = −Zg(r)

r
, g(0) = 1, g > 0,

dg

dr
< 0. (39)

The Thomas–Fermi potential VTF(r) of the self-consistent field in the many-electron atoms
[21] also belongs to type (39). All such model atomic potentials must obey the inequality
g′′ > 0. It follows from the Poisson equation

�U = Y1[U ]

r2
= −4πρ

for the electrostatic potential U, so that V = −|e|U and the electron charge density ρ < 0.
sgnY1[V ] = −sgnY1[U ] = −1; correspondingly, we get from (34) κ < −1. At the same
time, for (39) we obtain

κ = −1 +
g′′r2

g′r − g
= −1 − g′′r2

|g′r| + |g| (40)

with respect to inequalities (39), so that g′′ > 0. There are also important potentials with

g(r) = e−r , (41a)

g(r) = 1

(1 + r)2
, (41b)

g(r) = 1

(1 + r)2.5
(41c)

besides

VTF(r). (41d)

For all these potentials, the values χd and φ(d) depend on the value of the energy E. For the
deepest levels only a small domain r < rt → 0 is classically accessible in (24) (V (rt ) = E),
so that we have κ → −1 and χd → φ(d) → 1. In our quantum problem the deepest level
has small rt 	= 0 as well as E 	= −∞, so formally there is a very small distinction from this
limiting value of χd, φ(d).

In the opposite extreme case E → −0, corresponding values of χd and φ(d) for (41a)–
(41d) are shown in table 1. These values asymptotically coincide in the depth of the potential
well where there is no screening and the turning point rt → 0 for these V (r). In table 1
we have placed χd and φ(d) for some power-law potentials (28), including μ → ∞ (the
rectangular potential well) as well as multiplicative φm(3) from (25).

Let us demonstrate two ways of using T (7) taking as an example the model potential
(41c) which is a very good approximation of the real self-consistent atomic potential [22] with
Z being the nuclear charge. If we fix E = 0, then (24) indicates the order in which new bound
states appear with increasing Z as well as corresponding values of Z. In contrast, at Z = const
we get the level succession of all the bound states in a given atom with a fixed Z. It can be easily
seen from table 1 and (24) that shallow levels (E ≈ 0) are governed by nr + 1.75l (d = 3) but
the deepest levels by nr + l (i.e. they are Coulomb-like ones), with intermediate behavior for
middle levels. The introduced T ordering formalizes the well-known quantitative picture and
in particular explains the periodic system of the elements; see the following section.

Our method is valid and simple not only for potentials with a non-trivial analytic form as
(41c) but also for potentials given numerically. So for the Thomas–Fermi atomic potential,
we obtain φ(3) which is very close to the corresponding value of (41c).

8



J. Phys. A: Math. Theor. 42 (2009) 345202 A A Lobashev and N N Trunov

Figure 1. The effective quantum number T (7) versus φ (23) for the bound states (nr , l) with nr

and l being the radial and orbital quantum numbers respectively. Lines with l > 3 are omitted for
the sake of simplicity. Curves for the Yukawa potential V (r) = −50e−r /r (a) and the quarkonium
potential V (r) = 3 (−1/r + r) (b).

7. Universal diagram

The regular filling of shells in a centrally symmetric system with an arbitrary dimensionality
and nature of the self-consistent field is clearly described in figure 1. In this figure, each line
represents T (nr, l, φ) as the linear function of φ at fixed (nr , l). The crossing of two lines
marks the values of φ which change the order of the level succession. Two different types of
problems may be treated with the help of this diagram.

If E = 0, the value of φ is invariant under the transformations V → cV, r → c1r; this
value does not depend on Z (even if g = g (rf (Z)). However, this is not the case if E 	= 0.
With increasing strength of the potential (i.e. Z in (39)) new shells (nr , l) with E = 0 appear

9
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in the order of increasing T (nr, l) at a given value of φ(E = 0), i.e. along the vertical line
φ = const. Each shell can contain D(l, d) (15) states; only this number D depends on d.
When the shell (nr , l) is filled in, i.e. all states are occupied with particles, the filling of the
next shell (n′

r , l
′) begins with the value T ′ > T nearest to T.

It is known that the structure of the periodic system of the elements corresponds to the
definite order of the filling of the atomic shells with increasing Z [7, 22]. The actual order of
the shells is well known: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, i.e. (0, 0), (1, 0), (0, 1),
etc. It takes place if and only if

5/3 < φ(3) < 2 (42)

as follows from figure 1; for the first time, this range was found in another equivalent form of
the atomic potential asymptotics [14, 22]. The most probable value φ ≈ 1.75 corresponds to
the Thomas–Fermi potential as well as to (41c) and satisfies (42).

The usual supposed shells’ ordering in metallic clusters [6] means that φ = 1/3 in our
notation. We have obtained the close value φ(3) ≈ 0.37 for all levels in the rectangular
potential well (28) with μ → ∞. As can be seen from figure 1, the T ordering exactly
reproduces the level ordering calculated for (28) with d = 3 and several values of μ, e.g. for
μ = 0.1, φ ≈ 0.63 [11] and μ → ∞, φ ≈ 0.37.

Another situation arises if we treat φ(E) and the left side of condition (24) A(E)χ1(E)

at a fixed E as a point (φ(E),A(E)χ1(E)) on the plane of the diagram. By changing E we
obtain a curve, the form of which depends on a given potential V (r).

At an arbitrary point, we cannot find the integer (nr , l) satisfying (24). Such an
integer (nr , l) only exists for these points where one of the lines T (nr, l, φ) crosses the
curve. Thus, these distinguished points indicate the actual bound states and indirectly their
energies. The curve clearly shows how the level ordering changes with changing E or T
(remember that dT/dE > 0). As an example, we show such curves for the Yukawa potential
V (r) = −50e−r/r in figure 1(a) and for the quarkonium potential V (r) = 3 (−1/r + r) in
figure 1(b).

8. Asymptotic behavior of χp and φ and a nonlinear quantization condition

As we have demonstrated in the previous sections, our method with the approximation of
linearity in λ for T is sufficiently exact. Meanwhile, we can take into account nonlinear
corrections. In this section, we will introduce a nonlinear expression for our effective quantum
number T and demonstrate its new possibilities. Let us use the fact that the integral (19) has
the original form for the asymptotic Laplace expansion:

Md =
∫

Wd/2(x) dx ≈ Ad+1

√
4π

|W(2)|d
(

1 +
a1

d
+

a2

d2
+ · · ·

)
, (43)

where ak are known functions of the derivatives W(n) taken at the maximum point r =
rm,A2 = W(rm). Expanding md in the denominator of (23) similarly to (43) we obtain an
asymptotic expansion of χd ((26) and (31)), where

χ∞ = A

√
2

|W(2)| . (44)

A special case of such an expansion is (32). Of course, we can also calculate χ∞ as lim χd for
d → ∞ (even for nonanalytic potentials, when (44) may be incorrect). One can easily prove
numerically that all the interesting model potentials including those represented in table 1

10
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have b1 � 1, |b2| � |b1| and so on. For example, for power-law potentials (28) we have
b1(0) = −0.08, b1(4) = 0.139 according to (32), and only in an unreal case μ ≈ 15 do we get
b1(μ) ≈ 1. Thus, the asymptotic regime is already reached for d � 1 (actually for d � 0.5).
That is why χd are smooth monotonic functions for d � 1.

Using κ(r) (34), we can get an interesting expression equivalent to (44):

χ∞ =
√

2

κ(rm) + 2
. (45)

For power-law potentials, κ ≡ μ and we return to (30).
Neglecting in fd ((26) and (31)) all terms with d � 2, we obtain a simple approximation

χd ≈ χ
(as)
d = χ∞ +

χ1 − χ∞
d

. (46)

Substituting (46) into (23), we also have

φ(d) ≈ φ(as)(d) = χ1 +
χ1 − χ∞

d
. (47)

Finally comparing (46) and (47), we obtain another approximate expression

φ(d) ≈ χ
(as)
D , D = d

d + 1
. (48)

We have calculated ratios s = φ(as)(d)/φ(d) and χ
(as)
D /φ(d), where φ(d) is the basic form

(23) for various potentials and for a wide interval of E. It turns out that even for d = 3 both s
and w are close to unity: |s − 1|, |w − 1| � 0.02 and in most cases �0.01.

As we have already said, the closest approximation to the basic additive form φ is the
multiplicative form φm (25): for their ratio R = φ/φm we have R−1 < 0.01 and in most cases
< 0.002 (see table 1). Each of these approximations may be preferable in some particular
situations.

A simple universal form χ
(as)
d (46) allows us to get a universal nonlinear approximation

I (λ) = I (0) − F(λ) (49)

for I (E, λ) (17). Similar to what we have done in section 3, instead of (23) we obtain

d

Ad

∫ A

0
F(λ)λd−2 dλ = dχ1 − χd

d − 1
. (50)

If we assume F = φλ in (50), we return to φ as in (23). But this time we will use χd (46) and
thus come to a simple Melline transform for F(λ)λ−1:

1

Ad

∫ A

0
F(λ)λd−2 dλ = χ1

d
+

χ1 − χ∞
d2

, F (λ) = χ1λ + (χ1 − χ∞) λ ln(λ/A). (51)

Correspondingly, we obtain a nonlinear quantization condition

A(E)χ1(E) = Tnon(nr , l), Tnon(nr , l) = ν + F(λ). (52)

Both (51) and (52) become incorrect if λ/A � 1, but actually if d � 3 we have λ 	= 0 and a
finite λ/A even for l = 0 (see (13)); in real systems usually A ≈ λmax � 5.

Let us reproduce a delicate distinction obtained for the power-law potentials (28) by
means of the h̄-expansion of the Regge trajectories [23]. Using our notation, we can rewrite
the final result [23] in a simple form for μ > −1:

sgn (Eσ (0, l + 1) − 2Eσ (0, l) + Eσ (0, l − 1)) = sgn(2 − μ), σ = 2μ

μ + 1
. (53)

11



J. Phys. A: Math. Theor. 42 (2009) 345202 A A Lobashev and N N Trunov

Since E ∝ T
1
σ for (28), the left-hand side of (53) is linear in T; by substituting Tnon (52) in

(53), we obtain

sgn (χ∞ − χ1) · sgn� = sgn (χ∞ − χ1) = sgn(2 − μ), (54)

� = (λ + 1) ln(λ + 1) + (λ − 1) ln(λ − 1) − 2λ ln λ.

We have used here the fact that d2(x ln x)/dx2 > 0, so that � > 0, sgn� = 1. But the
last equality (54) is valid for our χd ; see table 1. It should be stressed that in any linear
approximation the left-hand side of equation (53) is equal to 0 and not to 1 as for �, so that
only nonlinear approximation confirms the strong result [23].

9. The level ordering for quarkonium systems

In this section, we will study the family of potentials for quarkonium systems [4]:

Vq(α, δ, r) = B
(
−α

r
+ (1 − α)rδ

)
, 0 < α < 1, δ > 0, B > 0. (55)

The following ordering was assumed for Vq :

E(0, 1) < E(1, 0) < E(0, 2). (56)

For this family, we have ∂V/∂r > 0, dk/dr > 0,

−1 < κ(r) = −1 + Qμ2

1 + Qμ
< κ(∞) = δ, Q(r) = 1 − α

α
rδ+1 (57)

for any r > 0. Thus, equation (36) holds and predicts the ordering (56), but only for δ � 2 (if
δ > 2, sgn(κ − 2) changes its sign when r is large).

Now we will study how our T method works in this situation. Since we act within the
WKB frame, we will introduce a natural weak

Conjecture 1. The level ordering satisfies (37) if sgn(κ − 2) = const in the classically
accessible domain:

r < rt , V (rt ) = E (58)

(we suppose ∂V/∂r > 0 for our potentials).

This conjecture allows us to maintain the previous level ordering (as for μ � 2) even
when δ > 2. It is easy to calculate that for (55) dκ(rt )/dα < 0, so that we can have κ(rt ) < 2
for small values of energy or for middle values of α but κ(rt ) > 2 and the inverse ordering
E(1, 0) > E(0, 2) if B(1−α) is great enough. Rigorous results [4] confirm these conclusions.
Note that for α � 1, the Coulomb term is negligible in (55) even for the deepest levels as
compared with B(1 − α)rδ . It also seems reasonable to make a strong

Conjecture 2. For any potential with a smooth dκ/dr, the value of φ can be well approximated
as φ[μ] for the power-law potential (28) with μ = κ(rm). Here rm depends both on the value
of the energy and on the parameters of a given potential, and rm is defined as W(rm) = max.

This conjecture is exact for χ∞; compare (30) and (45). Each χd and thus φ, as follows
from (31) and (43), includes functions bk depending on some derivatives W(n)(rm). We can
express W(n)(rm), ak (43) and correspondingly bk (31) by means of κ(r) (34). For example,
the main terms take the following form:

χd = χ∞[μm]

(
1 +

b1[μm] + badd
1

d
+ · · ·

)

12
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with μm ≡ κ(rm), χ∞ according to (30) or (45), b1[μ] from (32), a new function badd
1 depending

on κ(rm) in such a way that badd
1 ≡ 0 if κ(r) = const and

dκ

dx
= rm

dκ(rm)

dr
.

Using (49), we can write for d = 3, with the same accuracy,

φ = φ(μm) + φadd, φadd = 4badd
1

3
√

μm + 2

with one of the previous expressions for φ. In most or in fact in all of the real cases, we have
φadd � φ. The first approximation, which neglects κ2

r , κrr and is linear in λ is as follows

badd
1 = 16 + κ(rm)

24 (κ(rm) + 2)
rm

dκ(rm)

dr
.

Using (57), we get

dκ

dx
= r

dκ

dr
∼ 1

Q(rm)
� 1

at large Q. The condition Q � 1 is fulfilled at large E and/or large B(1 −α). Thus, we obtain
‘non-adiabatic’ corrections badd

1 � b1, φ
add � φ.

Then the coincidence of the two levels

T (0, 2) − T (1, 0) = 1 − 2φ

is possible if δ > 2 and E or B(1 − α) are large enough. So the line 1 − 2φ = 0 on the plane
(δ, B(1 − α)) divides two domains with opposite level ordering. Note that rm < rt ; for the
above case

rm ∼
(

2

2 + δ

) 1
δ

rt < rt .

Note that both χd and φ are some smooth monotonic functions of E and d for all potentials
in table 1.

10. Conclusion

Thus, we have constructed and calculated the effective quantum number T (7) which determines
the appearance and ordering of the bound states in centrally symmetric potentials with very
high accuracy. It should be stressed that different potentials may have very close or coinciding
values of φ and T and hence identical level ordering (see e.g. cases (41b) and (41c) in table 1).

Although using the Thomas–Fermi potential for explaining the periodic system is partially
successfully, it does not mean that this potential is the genuine or the best one. The point is
that its value of φ is situated not too close to the limiting points of the interval (46) so that
various corrections not taken into account in the Thomas–Fermi approach can only slightly
change the value of φ within this interval. Hence, the level ordering is really the same as for
the Thomas–Fermi potential.

The effective number T actually replaces the principal quantum number n = nr + l + 1 for
all potentials besides the Coulomb one with d = 3.

Using T, we immediately reproduce many results obtained for the level ordering by means
of special theorems and numerical calculations. Moreover, the quantization condition (24)
with T can also be used for determining the spectra. The accuracy of the energy values
calculated for V (r) = r is 0.3–0.5% and even in the worst case of the non-analytic potential
well (μ → ∞) errors do not exceed 3–5% [16]. For two potentials with the same value of φ
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we usually obtain different A and χ1, so that the energies of their bound states do not coincide
unlike the level ordering.

Let us summarize our main results. We have found step by step a special nonlinear
transformation from a given V (r) to a new function χd(E), where integer values of the
new variable d coincide with the dimensionality. First of all, we have introduced nonlinear
momenta Md(E) (19). Then we determine the ‘strength’ A of a given potential V (r) as the
maximum value of the classical angular momentum rP (see (14)). Finally, we compare a
given V (r) with our reference potential with the same value of A by means of χd(E) ((22)
and (23)). They are smooth functions of E and do not depend on E for power-law potentials.
As functions of d−1, these χd(E) rapidly reach the asymptotic regime for d � 1. Thus a wide
variety of physically interesting potentials, quite different as functions of r, show universal
behavior of χd . For determining the spectra it is practically sufficient to use χ1, χ2, χ3, simply
associated with the total numbers of states. The above transition from V (r) to χd may be in a
sense called a ‘spectral representation’.
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